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PREFACE

Part of the Project RAND research program conslsts
of basic supporting studies. The research presented in
this Memorandum concerns certain mathematical techniques
as applied to problems of radiative transfer.



SUMMARY

The use of principles of invarlance, as in invariant
imbedding and dynamic programming, leads characteristically
to functional equations of the form

£41(P) = T (£, (g(p))), n=0,1,2,...,

where fo(p) 1s known. The computational solution
proceeds stagewise, wlth fl determined from a knowledge
of fo, f2 determined by fl’ and so on.

In general, what 1s desired 1s the transient
behavior, small n, and the steady—state, or asymptotic
behavior as n » oco. In a number of significant
processes—radiative transfer, control theory, inventory
theory, and Markovian decision processes in general—only
the asymptotic results are of interest. This 1s also the
case in the application of gradient techniques.

In this paper, we shall outline the application of
nonlinear summability techniques to radiative transfer.
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A NOTE ON NONLINEAR SUMMABILITY TECHNIQUES
IN INVARIANT IMBEDDING

1. INTRODUCTION

The use of principles of invariance, as in invariant
imbedding [1] and dynamic programming [2], [3], leads
characteristically to functional equations of the fomm

(1.1) fn+1(P) - Tn(fn(g(P))): n=0,1,2,...,

where fo(p) is known. The computational solution
proceeds stagewlse, with fl determined from a knowledge
of fo, f2 determined by fl, and so on.

In general, what 1s desired is the transient
behavior, small n, and the steady—state, or asymptotic
behavior as n - . In a number of significant
processes—radiative transfer [1], control theory (3],
inventory theory [4], and Markovian decision processes
in general [5], [6]l—only the asymptotic results are of
interest. This is also the case in the application of
gradient techniques [7].

In some cases where the asymptotic results are not
of primary importance, they are worth obtaining in order
to test the accuracy of the numerical techniques, since
the steady-—state solution can often be derived by other
independent means.

It is evident that direct step—-by—step calculation
of the asymptotic solution, using (1.1), is time consuming.
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Hence, it is important to develop extrapolation tech—
niques. A most important step in this direction 1is the
work of Shanks [8], closely related to the QD-algorithm
of Rutishauser [9). We shall discuss below some
extensions related to nonequally spaced observations or
calculations. In this connectlon, let us mention the
work of Kantorovich and Krylov [10] concerning the
improvement of convergence of Fourier series and other
types of sequences.

In this paper, we shall outline the application of
nonlinear summabllity techniques to radlative transfer.
In a separate communication, we discuss its use in

connection with control theory [11].

2. MOTIVATION OF METHOD

The fundamental assumption is that we possess an

asymptotic expansion of the form
(2.1) £~ fop + i a.e
as n -+ ®, or that we can senslibly approximate to fn
by an expression of the type appearing on the right-hand
side. From theoretical considerations in invariant
imbedding, dynamic programming, gradient techniques and
elsewhere, we obtain rigorous demonstrations of this
relation; see [12], [13]. What is remarkable, as shown

by Shanks [8], 1s that quite accurate results are
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obtained even when an asymptotic relation of this type
does not hold, and even more remarkable 1s the fact that
calculations based on small values of n glve excellent
estimates for foo‘

If we take fn to have the simple form

_ bn

an lmmediate calculation ylelds

fn fn+l

w L]
(£, + £, — 2f)

In the next section we shall describe some experiments
with this simple nonlinear predictor. As mentioned
above, many further results based upon more sophisticated

approximations will be found in Shanks [8].

3. RADIATIVE TRANSFER

Let parallel rays of radiation be incident upon a
plane—parallel slab of finite thickness which absorbs
radiation and scatters it isotropically (see Fig. 1).

8

Fig. 1
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Usling the theory of invarlant imbedding, we obtain
an equation for the diffuse reflection r(6,¥,x) which
leads to a feaslble computational aigorithm. Numerical
and analytic results are given in [14] for a representa—
tive set of input angles 6, output angles ¥, and
thickness x. As polinted out above, it 1s of interest
to obtaln the results for infinite x in this way in
order to compare with previous results of Ambarzumian
and Chandrasekhar obtained in another fashion.

If the albedo for single scattering is 0.9, a
thickness of 6 mean free paths 1s required to saturate,
i.e., to obtain a reflection coefficient equivalent to
infinlite thickness to about four decimal places. TIFor the
particular case of input and output angles at 60° to
the normal, we calculated the reflection coefficient at
thicknesses of 0.00, 0.02, 0.04, ..., 1.20 mean free
paths. These values are listed in the following Table 1,
which 1s read across from left to right in each row and
from the top row to the bottom row. For a thickness of
1.2 mean free paths the calculated value is 0.23295887.

Next we use (2.3) on each set of three consecutive
entries in Table 1 to produce the entries in Table 2.
These are predictions of the limiting value, which 1s
0.272389.

Using the predictions of Table 2, we can use the
formula once agaln to produce another set of predicted

values. These are shown in Table 3.
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We see that we may predict a limiting value of about
0.27, which 1is quite accurate enough for many purposes.

Also remarkable 1s the fact that a double precision
calculation of values at .005, .010, ..., 300, with
r(m/3, /3, .300) = .111595 (which is less than 50 per
cent of the limiting value), predicts a limiting value
of 0.27.

It is clear what a great saving in time can be
obtained in this way.

Harriet Kaglwada carried out the calculations on an
IBM-7090. Only a few minutes of computing time were
required.

The questions of which predlctor formula to use,
what increment in thickness to employ, and how many
increments to use in order to predict the limiting

values most efficiently, are still open.

4, TIME-DEPENDENT PROCESSES

As indicated in a previous paper [15], time—dependent
radiative~transfer problems may be resolved computationally
in a multistage fashion. First we use invariant imbedding
to obtain a set of nonlinear partial differential—-integral
equations. A Laplace transform then reduces these to
equations identical in form to those encountered in the
time—independent problem. These are integrated numerically
for appropriately chosen values of the transform varilable.

Finally, we use a numerical inversion of the Laplace
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transform. A disadvantage of this method 1s that the
values of the desired function, say u(t), are obtained
at irregularly spaced points ti’ i=1,2,...,M, and it
is not easy to make tM large. Hence, an accurate
extrapolation method would be quite useful in this case.

In place of asking that we have a representation of
the type appearing in (2.1), we can ask that u(t) be
approximated to by a function w(t) satisfying the
linear differential equation

(n-1)

(n) -
(4.1) w + byw + +bw=>

n+l’

The unknown constants bi and the 1inltial values
W 0) = ¢y,
by the condition that

i=0,1,...,n -1, are to be determined

M 5
(4.2) b (u(ti) - w(ti))

is a minimum. The numerical solution of problems of this
type can be carried out quite easily using the techniques
of [16].

5. GRADIENT TECHNIQUES

The general i1dea of the gradlent technique 1is to
solve an equation of the form T(u) = 0 by imbedding it
within the solutions of

(5.2) 8= (u).
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The solutions of the original equation are taken as the
steady—states of (5.1). Since in this case only the
values at t = o0 are desired, nonlinear summability
results will save a good deal of computing time. Combined
with quasilinearization [17], [18], very accurate

results can be obtained. Results of this nature will be.

presented subsequently.
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